Computational Justice

Formal Models of Social Processes:

The Pursuit of Computational Justice in Self-Organising Multi-Agent Systems

Jeremy Pitt, Dídac Busquets and Régis Riveret Department of Electrical and Electronic Engineering Imperial College London

First NZ Agent School University of Otago, Dunedin, 1/12/2013

Context

- Systems requiring to collectivise and distribute resources
- Open systems
 - autonomous, heterogeneous, competing agents
- Technical systems
 - purely computing components
 - ▶ grid computing, cloud computing, ...
 - ▶ ad hoc networks, sensor networks, ...
- Socio-technical systems
 - people (and devices) interacting with infrastructure
 - Smart Grids, water management, transportation systems, ...
 - Shared (physical) spaces saturated with sensors, ...
 - Knowledge commons, ...

Key features of open systems

Self-determination

rules for resource allocation and how to choose them determined by the entities themselves

Expectation of error

 behaviour contrary to specification should be expected (be it by accident, necessity or malice)

Enforcement

sanctions for non-compliance should be implemented

Economy of scarcity

 sufficient resources to keep appropriators satisfied at the long-term, but insufficient to meet all demands at a particular time-point

Endogeneous resources

 computing the allocation must be 'paid for' from the same resources being allocated

No full disclosure

 appropriators are autonomous and their internal states cannot be checked

Rules and procedures in open systems

- Need some form of rules/procedures to ensure that
 - collective goals are achieved
 - individual goals are considered as well
 - ▶ balance between all these goals is just/fair/morally right
- Need to answer questions such as:
 - ▶ is the allocation of resources fair?
 - is the allocation method effective? Is it efficient?
 - > are decision makers accountable?
 - b do those affected by the rules participate in their selection?
 - are punishments for non-compliance proportional to the severity of the offence?

Address above questions through Computational Justice

Computational justice lies at the intersection of Computer Science and Economics, Philosophy, Psychology and Jurisprudence

It comprises...

- ... formal and/or computational models of judicial processes and systems
- ... representation, organisation and administration of rules or policies
- ... importing concepts from the Social Sciences into computing applications
- ... exporting some ideas back to socio-technical systems

Forms of Justice (that we consider)

Natural justice

b do agents participate in the decision making affecting them?

Distributive justice

how to fairly distribute resources?

Retributive justice

how to punish non-compliant behaviour?

• Procedural justice

▶ is a procedure fit-for-purpose? is it engaging/open/efficient?

• Interactional justice

how fairly are the agents treated by decision makers?

Key features and justice

No full disclosure — information, justification — **Interactional**

(1) Pitt et al. The Axiomatisation of Socio-Economic Principles for Self-Organising Systems, SASO 2011

(2) _____, Provision and appropriation of common-pool resources without full disclosure, PRIMA 2012

(3) ______, Self-organising common-pool resource allocation and canons of distributive justice, SASO 2012
 (4) _______, Procedural Justice and 'Fitness-for-Purpose'..., PRIMA 2013

'Natural' Justice

- Rules (of social interaction) that are so self-evident they need no justification
 - Nemo iudex in causa sua (no-one a judge in their own cause)
 - Audi alteram partem (hear the other side)
- Rules (of social interaction) that are repeatedly recurring patterns in time and space
- Elinor Ostrom (Nobel Laureate for Economic Science, 2009)
 - Common-pool resource (CPR) management by **self-governing institutions**
 - Fieldwork reveals same mechanisms in different parts the world, at different times, for different reasons
 - People would agree a conventional set of rules to manage (and sustain) a common resource
 - Refutation of the 'Tragedy of the Commons'
 - Alternative to privatisation or centralisation

Self-Governing the Commons

- Definition of an Institution (Ostrom)
 - "set of working rules that are used to determine who is eligible to make decisions in some arena, what actions are allowed or constrained, ... [and] contain prescriptions that forbid, permit or require some action or outcome"
- Conventionally agreed, mutually understood, monitored and enforced, mutable and nested
 - Nesting: tripartite analysis
 - operational-, collective- and constitutional-choice rules
 - Decision arenas [Action Situations]
 - Role-based protocols and conventional procedures
 - Requires representation of Institutionalised Power
 - Implicitly includes Robert's Rules of Order (RONR) for deliberative assemblies
 - **Self-organisation**: change the rules according to other ('fixed', 'pre-defined') sets of rules

• Self-governing institutions for enduring resources

- P1 Clearly defined boundaries
- P2 Congruence between appropriation and provision rules and the state of the prevailing local environment
- P3 Collective choice arrangements
- P4 Monitoring by appointed agencies
- P5 Flexible scale of graduated sanctions
- P6 Access to fast, cheap conflict resolution mechanisms
- P7 No intervention by external authorities
- P8 Systems of systems

- It is concerned with **fairly** allocating goods (also benefits, duties, burdens) to a set of actors in the society.
- Aristotle's principle[†]: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities and differences".
- Three main families of distributive justice theories[‡]:
 - Equality and need
 - Utilitarianism and welfare economics
 - Equity and desert

[†]Aristotle. Nicomachean Ethics, Book V. 350 BC.

[‡]Nice review in: James Konow. Which Is the Fairest One of All? A Positive Analysis of Justice Theories. Journal of Economic Literature, 41(4):1188–1239, 2003.

Different Theories of Distributive Justice

Equality and need

- Concern for the welfare of those least advantaged in the society
- Need principle: equal satisfaction of basic needs
- Some theories: Egalitarianism, Rawl's theory, Marxism

Utilitarianism and welfare economics

- Maximising the *global surplus* (outcome, utility, satisfaction)
- Does not deal with individual outcomes, but in the aggregation of these
- Theories: utilitarianism, Pareto principles, envy-freeness

Equity and desert

- Dependence of allocations on the actions of each individual
- *Equity principle*: an individual should receive an allocation that is proportional to her contributions (either positive or negative) to the society
- Theories: equity, desert and Nozicks theory

Fairness Criteria

• What fairness criteria to use to distribute the resources?

- Egalitarian: maximise satisfaction of most disadvantaged agent
- *Envy-free*: no agent prefers the allocation of any other agent
- Proportional: all agents receive the same share
- Equitable: each agent derives the same utility
- . . .
- Limitations of existing fairness criteria:
 - Many not appropriate under an economy of scarcity
 - Focus on a single aspect (monistic)
 - Often disregard temporal aspects (e.g. repeated allocations)

Procedural Justice: what is it?

- It is concerned with **fairly**, **accurately** and **efficiently** applying procedures to a set of actors in a society.
- In the context of resource allocation in open systems using institution
- Ostrom's institutional design principle (2): provision and appropriation rules should be congruent with the environment.
- Problems with determining 'congruence':
 - Multiple fairness metrics and subjectivity of fairness norms
 - Environment includes the institution-members themselves, who participate in the selection of the rules, and who can adapt their own behaviour according to any changes in the rules
 - Path dependency: present decisions constrained by the past
 - Shirky principle: institutions persist because they perpetuate the problem they were intended to solve

Different Theories of Procedural Justice

- Dispute resolution: 'adequate' participation and 'acceptable' accuracy
- Public health: balancing costs/benefits over which functions the authorities should maintain, justifying decisions, imposing decisions
- Organizational psychology: subjective assessments of procedural functions
- Rawls: graduated analysis
 - Fairness criterion and a procedure guaranteeing it
 - Only the criterion
 - Only the procedure

- Congruence == 'fitness-for-purpose'
- Fitness for purpose evaluated by principles of procedural justice
 - Participation principle: purposeful activities in which agents take part in relation to governance (not just voting)
 - Transparency principle: the amenability of procedures to be subject of investigation and analysis to establish facts of interest
 - who is making the decisions?
 - do they benefit disproportionately?
 - are they accountable?
 - can they be reviewed?
 - Balancing principle: proportionality of relative benefits and burdens

Retributive Justice and Interactional Justice

- Retributive Justice
 - Punishment for non-compliance; reward for compliance
 - Retributivism vs. utilitarianism
 - Punishment proportional to offence
- Interactional Justice
 - Interpersonal justice (what is the opinion of the loser?)
 - Informational justice (justifications)
 - How to evaluate an institution with only subjective fairness assessments and a social network?

Experiments with Endogenous Resources and Multiple Institutions

Linear Public Good (LPG) game

- Used for examining free-rider hypothesis and incentives for voluntary contributions
 - *n* agents or players form a cluster
 - Individually possess a quantity of a resource
 - Each cluster member privately and independently decides to contribute some resource to the public good (common pool)
- Model provision as an LPG game:
 - Every player *i* in the game makes a provision p_i in [0, 1]
 - Each player gets a utility u_i given by:

$$u_i = rac{a}{n}\sum_{j=1}^n p_j + b(1-p_i), ext{ where } a > b ext{ and } rac{a}{n} < b$$

Limitations of the LPG

Agreed rules still need to be monitored and enforced in open systems with endogenous resources

- LPG assumptions
 - No cheating on appropriation
 - Full disclosure
 - No diminishing returns
 - No monitoring costs are incurred
- But: agents may not comply (intentionally or unintentionally) with conventional rules
 - May not provision the resources that it said it would
 - May demand more resources than it actually needs
 - May appropriate more resources than it was actually allocated
 - Include rules to prevent free-riding
 - Do not have full disclosure
- Monitor behaviour to ensure compliance with the rules
- System of endogenous resources: monitoring is not free
- Excessive/expensive monitoring can be as ruinous as cheating

Overcoming the Limitations

Variant game: LPG' – in each round, each agent:

- Determines the resources it has available, $g_i \in [0,1]$
- Determines its need for resources, $q_i \in [0, 1]$
 - In an economy of scarcity, $q_i > g_i$
- Makes a demand for resources, $d_i \in [0, 1]$
- Makes a provision of resources, $p_i \in [0,1]$ $(p_i \leq g_i)$
- Receives an allocation of resources, $r_i \in [0, 1]$
- Makes an appropriation of resources, $r'_i \in [0, 1]$

• Agents may not comply, $r'_i > r_i$

Utility in LPG': accrued resources $R_i = r'_i + (g_i - p_i)$

$$U_i = \left\{ egin{array}{ll} aq_i + b(R_i - q_i), & ext{if } R_i \geq q_i \ aR_i - c(q_i - R_i), & ext{otherwise} \end{array}
ight.$$

Setting – Institution

Game played in cluster C is an instance of institution I

$$I_t = \langle \mathcal{M}, L, \epsilon \rangle_t$$

where at time t:

- $\mathcal{M} = \mathsf{set}$ of member (prosumer) agents
- *L* = legislature (set of rules to determine roles/rules)
- $\epsilon =$ state of the environment (including resources)

The legislature can be given a formal characterisation in an action language, e.g. the Event Calculus, of **role-based procedures** for *prosum*, *monitor* and *chair*

Aim: Play multiple rounds of LPG': using a theory of distributive justice, achieve 'fair' resource allocation over time and retain/sustain membership of cluster

Rescher's Legitimate Claims (canons of distributive justice)

- Rescher proposes to treat people according to...
 - ... as equals
 - ... needs
 - ... actual productive contribution
 - ... efforts and sacrifices
 - ... a valuation of their socially-useful services
 - ... supply and demand
 - ... ability, merit or achievements
- Each canon, taken in isolation, is inadequate to achieve fairness
- Justice consists of evaluating and prioritising agents claims, both positive and negative
- Determine what the legitimate claims are, how they are accommodated in case of plurality, and how they are reconciled in case of conflict

Representation of Legitimate claims

Equals	Average allocation	$rac{\sum_{t=0}^{T} r_i(t)}{T}$		
Lquais	Allocation frequency $\frac{\sum_{t=0}^{T} (r_i(t) > 0)}{T}$			
Needs	Average demands $rac{\sum_{t=0}^{T} d_i(t)}{T}$			
Contribution	Average provision $\frac{\sum_{t=0}^{T} p_i(t)}{T}$			
	Number of rounds present $ \mathbf{T}_{\{i \in C\}} $			
Effort	Number of rounds present	$ T_{\{i\in C\}} $		
Effort Social utility	Number of rounds present Time as <i>head</i>	$ \mathbf{T}_{\{i \in C\}} $ $ \{t role_of(i, t) = head\} $		
Effort Social utility Supply & demand	Number of rounds present Time as <i>head</i> Compliance	$ \mathbf{T}_{\{i \in C\}} $ $ \{t role_of(i, t) = head\} $ $ \{t r'_i(t) = r_i(t)\} $		
Effort Social utility Supply & demand Ability, merits	Number of rounds present Time as <i>head</i> Compliance	$ \mathbf{T}_{\{i \in C\}} $ $ \{t role_of(i, t) = head\} $ $ \{t r'_i(t) = r_i(t)\} $		

$d_i(t)$	Demand of				
$p_i(t)$	Provision of				
$r_i(t)$	Allocation to	agent / at time t			
$r'_i(t)$	Appropriation of				
$role_of(i, t)$	Role of				
$T_{\{i \in C\}}$	Rounds agent i present in cluster C				

Computational Justice

Legitimate Claims as Voting Functions

- Each canon C_i treated as a voter in a Borda count protocol, on **agents**
 - It ranks agents according to some features (e.g. needs, contribution...)
 - It assigns a score to each agent, $B_i(a)$
- To combine claims, a weight w_i is attached to each canon
- Final Borda score of agent a is:

$$B(a) = \sum_{i=1}^{n} w_i \cdot B_i(a)$$

- Use final Borda ranking as a queue to allocate resources
- Allocate agents' full requests until no more resources available

Legitimate Claims in action

Computational Justice

Self-determining the weights

- Instead of fixing the weights of each canon, allow the agents to modify them
- At the end of each round
 - Agents vote for the canons in order of preference (according to rank given by each canon) using a modified Borda count*
 - Borda score computed for each canon
 - Canons with better than average Borda score have weight increased, otherwise decreased
- This supports Ostrom's Principle 3: "those affected by the operational-choice rules participate in the selection and modification of those rules"

*Allowing for some candidates having the same number of points

Determining the canons' weights

	Points given by			Panking	Points given to			
	C_1	C_2	<i>C</i> ₃	Raliking	C_1	C_2	<i>C</i> ₃	
a_1	3	1	1	$\langle C_1, C_2 \sim C_3 \rangle$	3	1.5	1.5	
a ₂	1	3	2	$\langle C_2, C_3, C_1 \rangle$	1	3	2	
a ₃	2	2	3	$\langle C_3, C_1 \sim C_2 \rangle$	1.5	1.5	3	
					5.5	6	6.5	
(w_1	\downarrow		
Average Borda score = 6 \Longrightarrow				<i>W</i> ₂	=			
				W3	\uparrow			

Some results

- Compare self-organising legitimate claims, fixed weights, random and ration allocation methods
- Self-organising legitimate claims...
 - ... was the only method producing endurance of the system and benefiting compliant agents
 - ... was the fairest[†] method (wrt to ration and fixed LC)
 - ... was preferred by the compliant agents
 - ... leads to a very fair overall allocation in spite of a series of rather unfair allocations

[†]Using Gini inequality index over accumulated allocations to measure fairness

Computational Justice

Computational Justice and Ostrom's Institutional Design Principles

- We have identified some aspects of justice desirable in open systems as **computational justice**
- We have contextualised it in **self-organising electronic institutions**
- We have done some work on each qualifier of justice (that we consider)
- Still much work to do on these, and on other forms of justice, and on their interleaving
- Even more work to do in the transfer of computational justice to socio-technical systems